
We review some of the tools used to analyze time series 
—sequences of measurements of one or more variables 
pertaining to the same system. The tools include time-
resolved statistics and spectra; autocorrelations, mu-

tual information and transfer entropy; complexity, predictability and 
hypothesis testing. We illustrate the use of these tools by analyzing ex-
tracellular recordings from the leech, vasomotion data from monkeys, 
and human electroencephalograms. 

I. Introduction
At one time or another, every experimental or observational sci-

entist engages in some time series analysis. That is, given a series of 
measurements of a variable, one calculates quantities that may be used 
to characterize the data or preferably, to characterize the system that 
produced the data. Given two or more such measured variables, one 
seeks functional relationships or measures of correlation or of causal 
relations. 

In recent decades, with the development of more precise measuring 
instruments, and with the increased popularity of automated, high-
speed data acquisition, it has become possible to amass huge amounts 
of data that require analysis and interpretation. In the biological and 
medical sciences, unlike in some of the physical sciences, these data 
streams are often not predicted, and not related, by rigorous, math-
ematically based theory. It is the data themselves that must tell the 
story, and it is from analysis of the data rather than from theoretical 
predictions that one tries to find relationships among measured vari-
ables. This is a major task of time series analysis.

Until quite recently, time series analysis consisted almost exclusively 
of calculations and model-building that focused attention on linear 
properties of the measured variable. Often, it employed techniques 
that have little or no sensitivity to the time sequence of the data. One 
calculated the variable’s statistics and measures of correlation and 
spectra. One built statistical or mathematical models which, when 
they worked, made possible the prediction of future values.  

Statistics, though, are insensitive to time sequence and so are inca-
pable of providing information about the system’s time evolution—its 
dynamics, and linear measures tell only part of the story. While spectra 
are sensitive to time sequence, the information they provide applies 
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to the entire epoch spanned by the data and hence cannot shed any 
light on changes in the system’s dynamics during that epoch. Indeed, 
statistical as well as spectral calculations presume that no significant 
changes occur in the system’s properties during the time spanned by 
the data—that is, that the data are stationary. 

In recent decades, considerable attention has been paid to the esti-
mation of measures that describe dynamical and nonlinear character-
istics of time series. Some of these methods are extensions of familiar 
ones while some others have resulted from the recent resurgence of 
activity in nonlinear dynamics. In this review, we describe a subset of 
these measures, and illustrate their uses by applying them to the analy-
sis of some biological data. The list of tools we discuss is by no means 
exhaustive. It only includes some of the tools that we have found to be 
useful and appropriate in attempting to understand our data.

In Sec. II we look at time-resolved statistics and illustrate their use 
in predicting behavioral responses of the medicinal leech. We find that 
the leech’s response may depend on the activity of its nervous system 
prior to stimulation.

In Sec. III we use the Fourier and Gabor Transforms—the latter is 
essentially time-resolved Fourier Transforms—to show differences 
among healthy, prediabetic, and diabetic monkeys. Our results indi-
cate that spectral measures may provide criteria for identifying sub-
jects who are in imminent danger of developing diabetes. 

In Sec. IV we discuss linear correlations and two Information Theo-
retic measures—mutual information and transfer entropy. Mutual 
information measures nonlinear correlations between data streams. 
Transfer entropy measures the amount of information transferred be-
tween them. We illustrate the use of these measures by studying pat-
terns of correlation and of information transfer in 10-channel electro-
encephalographic (EEG) data recorded from a human subject. 

Algorithmic complexity is a measure of the compressibility of sym-
bol sequences. When applied to time series data, it is used to measure 
the degree of nonrandom structure in the time series. Nonlinear pre-
dictability measures how well future values of a variable can be pre-
dicted from its past. The latter provides some measure of the possibil-
ity that the data were generated by a deterministic dynamical system. 
We discuss these in Sec. V and again use EEG data to illustrate the kind 
of information provided by these quantities.

We conclude, in Sec. VI, with a discussion of hypothesis testing—
the use of surrogates to test the validity of assumptions about the na-
ture of the data. We discuss a few of the commonly used surrogates 
and illustrate their use by testing some hypotheses about the nature of 
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EEG signals and their correlations. Preliminary results suggest that an 
individual EEG data stream that is indistinguishable from linearly cor-
related noise may nevertheless have correlations and may participate 
in information transfer in a manner that cannot fully be accounted for 
by linear processes.

II. Statistics and Dynamics
II.1 Mean and variance
Given a series of values, X={x1, x2, …,xN}  of a variable, x, the most com-
mon way of characterizing it is by using its mean or average value,
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These statistical measures can only characterize the distribution of 
the x’s, however. They are insensitive to the sequence in which differ-
ent values of x appear in the series. In other words, these measures 
are insensitive to the dynamics of the system that produced the time 
series; they can only characterize the relative frequency with which 
the values occur. If the series of x’s were arbitrarily shuffled, thereby 
destroying any information conveyed by their temporal order, the mo-
ments of the distribution would not change. The time sequence of dy-
namical signals carry important information about the systems that 
generate them. This level of statistical description is clearly inadequate 
for characterizing dynamical systems. Any characterization of dynam-
ics must take time into account.

II.3  Time-resolved statistics
Some information on the manner in which the time series changes in 
time may be obtained by partitioning it into sub-epochs or windows 
and calculating the statistics of each window. The windows may or may 
not overlap. The behavior in time of the statistics characterizing this 
sequence of windows then provides some dynamical information. The 
resulting quantities are sometimes called time-resolved statistics. We 
illustrate their use with some data from the leech.

II.3a Leeches: to swim or not to swim
When an interneuron in one of the brains of the medicinal leech (Hi-
rudo medicinalis) is electrically stimulated (yes, a leech has two brains, 
one at each end!), sometimes it shows signs of swimming, sometimes 
it shows signs of crawling, sometimes it does not show any overt re-
sponse (Brodfuehrer et al. 2008 and references therein). 

Figure 1 shows electrical signals propagating along the ventral nerve 
cord before, during, and after stimulation. The data were recorded ex-
tracellularly between the 9th and 10th ganglia of an isolated leech ner-
vous system. Signals were digitized at 4.0 kHz. The topmost trace is 
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Here and in the following, we assume that N is large enough and 
that the series of values of x available to us is a sufficiently unbiased 
sampling of the population of x’s so that the quantities we calculate 
from our sample are good enough approximations of the quantities 
that characterize the population as a whole.

The mean, though, is a pretty crude measure; its inadequacy illus-
trated by the story of the non-swimmer who drowned in a river with 
a mean depth of  cm. The mean does not convey any information 
about the range of values that the variable may have, and is greatly 
influenced by outliers—values that are either much greater or much 
less than the rest.

Some information concerning the spread of values about the mean 
is given by the variance,
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or by its square root, the standard deviation, σ.

II.2 Higher moments
More detailed statistical characterization of the distribution of the x’s 
is given by averages of higher powers of x, or averages of higher pow-
ers of deviations of x from its mean, that is, the pth order moments of 
x, defined by 
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or the pth order central moments of x,
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Note that the mean is the first moment of the distribution of the x’s, 
and the variance is its second central moment. The third central mo-
ment, the skewness, measures the symmetry of the distribution about 
the mean, and the fourth central moment, the kurtosis measures the 
deviation of the distribution from a gaussian, or normal, distribution.
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Figure 1. Electrical signals propagating in the ventral nerve cord of a leech before, during, and 
after electrical stimulation. The time axis is in units of 0.25 ms. The top signal preceded fictive 
swimming, the middle preceded fictive crawling, the bottom signal did not elicit either swimming 
or crawling. The beginning and the end of the stimulation are marked by the vertical bars. 
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a signal in a situation when the leech subsequently generated neural 
signals associated with swimming (fictive swimming), the middle trace 
is when the leech subsequently showed fictive crawling, the bottom 
trace is when the leech did nothing. The vertical lines (at t=1.2x104 
and t=1.6x104 in units of 0.250 ms) mark the beginning and the end 
of the stimulation. The stimulation in each case consisted of the same 
amount of electrical current injected during a 1 s time interval.

Figure 1 shows that before stimulus onset, the data appear to be 
stationary, indicating that the usual, time-independent statistics may 
be sufficient. This, however, is not the case after the stimulus begins, 
when the time dependence of the signals clearly demands some time 
resolution.

Figure 2 shows the time-resolved variance of the signals for the three 
cases, calculated by using overlapping 400-point (100 ms) epochs. The 
starting points of successive epochs differed by 40 points (10 ms). 

It is clear from Fig. 2 that before stimulus onset, the signals are rel-
atively stationary relative to variance. The mean values for the three 
cases are all significantly different from each other, ordered as: swim 
>crawl>no response (t-test, p<10-4 for all pairs). The differences in the 
ventral cord activity prior to stimulation could well determine the 
leech’s subsequent response (Albano et al. 2006). 

After stimulus onset, the crawl and swim variances rise to an essen-
tially common maximum, attaining it in 290 ms. During this period, 
they are not statistically distinguishable. Past their maxima, the two 
signals begin to differ, eventually diverging at approximately 630 ms 
after stimulus onset. The possibility that the signals are indeed indis-
tinguishable during the immediate post stimulus-onset period lends 
further support to the idea that it is the pre-stimulus state of the ani-
mal’s nervous system that determines its eventual response.

III. Fourier and Gabor
III.1 The Discrete Fourier Transform (DFT) (Press et al. 2002) 
The Fourier Transform, h(f ), of a continuous variable, x(t), is defined 
by
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When dealing with a time series, {x1, x2, …, xN}, a sequence of values 
of x measured at discrete values of time, t₁= τ, t₂=2τ, ..., tk=kτ,..., with 
sampling time, τ, the above definition needs to be modified. Instead of 
h(f ), which is a function of a continuous variable, f, we get a Discrete 
Fourier Transform (DFT), hn, a sequence of values corresponding to 
discrete frequencies, fn=n/Nτ. The hn’s are given by,

1
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For real-valued x’s (which is all we care about here), P(n)=c|hn|
2, n=0, 

1, …, N/2, is a measure of the amount of “energy” carried by x between 
the frequencies  fn and fn+1. (This terminology arose from the use of the 
Fourier Transform in electrical circuits, in which x is either a voltage 
or a current and electrical power is proportional to the square of either 
of these quantities).

The constant, c, is a normalization factor, of which there are quite 
a few that are in common use (see, .e.g, Press et al 2002, Chap 13). 
Sometimes, the P(n)’s are called either the power spectrum or the pow-
er spectral density (PSD) depending on the value of c. Here, we use the 
value, c=Σn|hn|

2 (see Eq. 7), so that the resulting P(n)’s represent the 
fraction of the energy in the frequency range (fn, fn+1) and, following 
Press et al 2002, we will use the two terms interchangeably.

III.1a. Discontinuities, detrending windowing, and aliasing
The Discrete Fourier Transform tries to do quite a lot. It uses a finite 
number of sampled points, {x1, x2, …, xN},  to get an approximation of 
the behavior of a function, x(t), that depends on a continuous variable, 
t, which has an infinite domain, -∞<t<∞. This can work only if either 
x is nonzero just in the time interval sampled, or if the sample used is 
“typical” of all other intervals.
	 If one takes the view that x(t) is nonzero only in the interval sam-
pled, it means that if x1≠0 or xN≠0, then x(t) changes drastically at one 
or the other boundary of the interval. If one takes the view that the 
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Figure 2. Time-resolved variance of signals propagating in the leech ventral cord before, during, 
and after electrical stimulation. These values were calculated using non-overlapping 100.0-ms 
windows. The time axis is in units of 10 ms. Results shown are averages of 5 trials in which the 
stimulus elicited no response, 13 trials that led to crawling, and 21 trials that led to swimming. 
Solid line = no response, crosses = crawl, circles = swim. Vertical line marks stimulus onset.

Figure 3. Flow rates for a normal (top), a 
prediabetic (middle) and a diabetic (bottom) 
monkey. The ordinate are in arbitrary flow rate 
units, the time axis (abscissae) spans 31.7 s in 
steps of 0.031 s.
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sample used is typical, then one needs to imagine x(t) as an infinite 
sequence of repetitions of {x1, x2, …, xN}. In this case, if x1≠xN then x(t) 
changes discontinuously at both boundaries of the interval. If there is 
a linear trend in the data, then, in general, x1≠xN. Any discontinuous 
change at the boundaries results in anomalously large high-frequency 
contributions to the DFT. 
	 This artifactual enhancement of high-frequency components be-
cause of edge effects can be mitigated by subtracting the mean and the 
linear trend (detrending) and by forcing the detrended time series to 
approach zero gently at both ends while keeping most of its values in 
the interior of the interval relatively unchanged. The latter can be done 
by multiplying the time series with a function that approaches zero 
gently at both ends, but which rises close or equal to one in most of the 
interior points. Such a function is called a window function (see Press 
et al.  for some commonly used window functions). The DFT is 
then calculated for the time series that has been detrended, and then 
windowed (the order of the operations matters).

If the signal contains frequencies greater than fN/2=1/2τ, the Nyquist 
critical frequency, then the DFT folds these high-frequency contribu-
tions into the interval, (0, fN/2). This phenomenon is called aliasing. Un-
fortunately, no post-measurement manipulations can mitigate alias-
ing. It can only be eliminated by low-pass filtering the data as they are 
measured (Press et al. 2002).

III.1b. Monkeys: vasomotion in sickness and in health
Vasomotion is the spontaneous rhythmic oscillation of vessel diam-
eter, flow, or pressure in the peripheral blood vessels. Derangement 
of vasomotion has been previously suggested as a possible cause of 

diabetic neuropathy (Stansberry et al. 1996). We illustrate the use of 
the DFT on biological time series by analyzing vasomotion data from 
normal, prediabetic, and diabetic monkeys.

Figure 3 shows 400-point epochs of flow rate data for a normal 
(top), a prediabetic (middle), and a diabetic (bottom) monkey. The 
data were obtained using laser Doppler fluximetry from the dorsum of 
the foot of anesthetized monkeys after an overnight fast. The sampling 
time was 0.031 s. Even in these time series, there are visible differences 
in the predominant frequencies for the three metabolic states, differ-
ences which we quantify using the DFT.

In order to compare signals with different total energies, we normal-
ize the PSD:
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with the hk’s as defined in Eq. (6). Fig. 4 shows normalized PSD’s for the 
three time series shown in Fig. 3. The predominant spectral peaks are 
seen to be below 2.5 Hz. As the metabolic state changes from normal 
to prediabetic to diabetic, the largest peak moves to lower frequencies.  
This shift may represent a shift in the distribution of blood from nutri-
tional (capillaries) to non-nutritional (arterio-venous shunts) vessels 
with progression of diabetes (Tigno et al. 2009)

III.2 The Gabor Transform
For data such as those shown in Fig. 3, the use of a single PSD to char-
acterize the entire time series is likely to be adequate. Each of the time 
series shows oscillatory behavior, but there do not appear to be major 
qualitative changes in the character of the data. This is certainly not 
the case for the data shown on the lower panel of Fig. 5 where there are 
obvious changes not only in the magnitude, but also in the predomi-
nant frequency of the signal as time progresses. One way to keep track 
of these changes is to perform time-resolved spectral calculations us-
ing a moving window such as that used for calculating time-resolved 
statistics in Sec. II.3. The resulting sequence of Fourier Transforms is 
called a short-time Fourier Transform which provides a characteriza-
tion of the data in both the time and frequency domains. It is particu-
larly useful if the characteristic frequencies of the time series change in 
time. This procedure for obtaining a time-frequency representation of 
the signal was initially proposed by Gabor (Gabor 1946) using a gauss-
ian window to evaluate the DFT’s of the individual data segments. The 
result is usually called a Gabor transform, although the term is also 
used to refer to results obtained using other windows (Bastiaans and 
Geilen 1996). The Gabor transform is to spectra what time-resolved 
statistics are to statistics.

III.2a Thermally stressed monkeys
It is known that different metabolic risk groups respond differently 
to thermal stimulation (Tigno et al. 2003). An example of heat treat-
ment data is shown in Fig. 5. The upper panel shows the temperature 
to which the monkey is subject while the lower panel shows the mea-
sured flow rates. In this example, vasomotion recording was started 
with the monkey at a temperature of 29.5˚C. The temperature was then 
increased linearly until it reached some 44oC, and then held at that lev-
el for some 243 s, after which the monkey was allowed to cool down. 

Figure 4. Normalized power 
spectral densities (PSD) of the 
time series shown in Fig. 3. Top: 
normal, middle: pre-diabetic, 
bottom: diabetic.

Figure 5. Time dependence of 
flow rate for a normal monkey 
subjected to a “heat treatment.” 
Top panel shows the temperature 
(°C), bottom panel shows flow 
rate.
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Figure 6a shows a surface plot of the normalized PSD from the Ga-
bor Transform of the data shown in Fig. 5, calculated using contiguous, 
non-overlapping 400-point (12.4 s) windows and a Hanning window 
function. The temperature ramp lasts from 34 s to 57 s. At the start, 
the peak at ~2 Hz dominates the spectrum. As the temperature is in-
creased, it diminishes as the peak at ~1 Hz gains prominence. Both 
peaks suffer a dip around the mid-point of the temperature plateau, 
and then both increase again with the 1 Hz peak still dominant. As the 
monkey cools off, the 2 Hz peak eventually becomes larger than the 1 
Hz peak, but the former does not attain its starting value.

Figures 6b and c are surface plots of normalized PSD’s from the Ga-
bor transforms of a prediabetic and a diabetic monkey, respectively. 
The differences between these and Fig. 6a are quite dramatic. In the 
prediabetic monkey, the 2 Hz peak dominates throughout, while in 
the diabetic case, it is the 1 Hz peak that dominates although there are 
considerable variations in the heights of the two major peaks. Analy-
sis of additional data is underway to determine if these behaviors are 
indeed typical.

IV. Correlation and Causality
Given a series of simultaneously measured values of two variables per-
taining to the same system,

X =  {x1, x2, …, xN} and Y = {y1, y2, …, yN},                   (8)

there are a number of quantities that can be used to measure the extent 
to which the variables are correlated or to determine if there exists a 
causal relationship between them. Here, we restrict ourselves to a brief 
discussion of two measures of correlation and one of causality, and il-
lustrate their use with human electroencephalographic (EEG) signals.

IV.1 Correlations
IV.1a Pearson’s r

The cross-correlation coefficient, r (Pearson’s r), has been long and 
widely used to measure correlation. It is a measure of how two vari-
ables track each other. The cross-correlation coefficient of X and Y (Eq. 
8) is estimated by,
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where <x> and <y> are the respective means of X and Y, and σx and σy 
their respective standard deviations. This measure, however, is limited 
by that fact that it is insensitive to nonlinear correlations. (Mars and 
Lopes da Silva 1987)

IV.1b Mutual Information
The Mutual Information, I(X,Y), of X and Y, is the amount of informa-
tion common to X and Y  (Shannon and Weaver 1949) and is estimated 
by

,
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where pX,Y(x,y) is the joint probability distribution of X and Y and pX(x) 
and pY(y) are their respective marginal probabilities. I(X,Y) is a mea-
sure of the amount of information about X given a measurement of Y 
and vice versa. More precisely, it is the average number of bits of Y that 
can be predicted by measuring X, where it can be shown that this is 
symmetrical I(X,Y)=I(Y,X). It is a generalization of measures of cross-
correlation such as Pearson’s r to the extent that unlike r, it is sensitive 
to nonlinear correlations (Fraser and Swinney 1986, Mars and Lopes 
da Silva 1987).

IV1c. Transfer Entropy
Correlations, linear or nonlinear, only indicate the extent to which 
two variables are similar. They say nothing about causal relationships. 
Neither can they indicate if two variables are similar not because they 
interact with each other, but because they are both driven by a third. 
These issues can be addressed by measures of causality or of informa-
tion transfer. One such measure is Schreiber’s Transfer Entropy (Sch-
reiber 2000) defined by,
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where p(x|y) are conditional probabilities. It is a measure of the influ-
ence of the sequence, Y, on the evolution of X. Hlavácková-Schindlera 
et at. 2007 showed that this is equivalent to the conditional mutual 
information, the mutual information of {x1, x2, …, xN-1} and {x2, x3, …,xN} 
given { y1, y2, …, yN-1}. 
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Figure 6. PSD surface plots. a, obtained from the Gabor Transform of the data from a normal monkey shown on the bottom panel of Fig. 5. The temperature ramp lasts from 34 s to 57 s; the 
temperature plateau ends at 298 s; b, from the Gabor Transform of data from a pre-diabetic monkey undergoing heat treatment; and c, from the Gabor Transform of data from a diabetic monkey 
undergoing heat treatment.
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IV2. People: seeing vs. not
Vision takes up a lot of the human brain’s resources, and this is indicat-
ed in part by differences in the free-running electroencephalographic 
(EEG) activity of a subject with eyes closed and that of the same subject 
with eyes open. Figs. 7a and b are 10-channel EEG recordings. These 
records are voltages measured at the scalp locations shown on Fig. 7c 
relative to linked earlobes.

Visual inspection of these graphs provide a lot of information to 
trained encephalograpers, but quantitative information about the data 
and about correlations and causal relations can only be provided by 
computational tools such as those described above.

Figures 8a and b show cross-correlation coefficients for all scalp site 
pairs of the data shown in Figs. 7a and b. In Fig. 8a, the color of a cell 
represents the cross-correlation coefficient of the two scalp sites cor-
responding to its row and column. Fig. 8b shows the cross-correlation 
coefficients of all scalp site pairs as a single line plot for each condition. 
With eyes closed, all scalp site pairs are highly correlated. In contrast, 
with eyes open, most are relatively uncorrelated except for Fz-Cz, Cz-
Pz, Pz-Oz, P3-Cz, P3-Oz, and P3-Fz (points 1, 3, 6, , 30, 31, and 32 in 
Fig. 8b). 

Figures 9a and b show the corresponding results for Mutual Infor-
mation, calculated using an algorithm due to Cellucci (Celluci et al. 
2005). These figures tell a story that is similar to that told by the cross-
correlation coefficient. The patterns of linear and nonlinear correla-
tions are similar.

Patterns of information transfer, however, are completely different 
from those of the correlations. Figs. 10a and 10b display values of net 
Transfer Entropy. That is, in Fig. 10a, the value associated with a cell 
at the mth row and nth column is the difference between the Transfer 
Entropy from m to n and that from n to m. A positive value indicates 
that information is being transferred from m to n, a negative value is 
information transfer is the other way around. In Fig. 10, note that the 
color bar scales are different.

In the eyes closed condition, the Transfer Entropy oscillates in the 
range [-0.325, 0.228] with a mean value of -0.064. In the eyes open 
condition the corresponding values are [-1.0243, 0.8783] and -0.254. 
The largest Net Transfer Entropy values for the eyes open condition 
are over five times greater than the standard deviation of the eyes 
closed condition. There is, indeed, much greater information transfer 
among brain areas when one sees.

Figure 7. Electroencephalographic activity of a human subject. a, with eyes closed taken from scalp locations Fz, Cz, Pz, Oz, F3, F4, C3, C4 P3 and P4 (top to bottom); b, EEG of the same subject from 
the same scalp locations as Fig7a but with eyes open. c, Electrode locations on the scalp used for EEG measurements (“The 10-20 system”). Oz is on the mid-line between O1 and O2.

Figure 8. Cross-correlation 
coefficients (Pearson’s r) of the 
EEGs shown in Figs. 7a and 7b. 
a, Top: eyes open, bottom: eyes 
closed. Rows and columns are 
identified by the 10-20 system 
(Fig 7c) designations of scalp 
electrode sites. The color of each 
cell represents, using the scale 
on the color bar on the right, the 
cross-correlation coefficient of the 
sites identified by the row and the 
column of the cell; b, The cross-
correlation coefficients of Fig. 8a 
shown as a single line plot Each 
point corresponds to a cell in the 
arrays shown in Fig. 8a. Solid line 
= Eyes closed, Circles = Eyes open.
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Figure 10a shows that the largest amounts of Information Transfer 
are from F3 and F4 to Fz, Cz and Pz and from F3, F4, C3 and C4 to 
P3. The contrast between these results and those for cross-correlation 
and Mutual Information shows that two highly correlated data streams 
may not in fact be participating in a net transfer of information. They 
may well be receiving the same information from a common source.

V. Complexity and Predictability
V.1 Complexity
The algorithmic complexity of a symbol sequence is the length of the 
shortest instruction set needed to reconstruct it. If a symbol-based 
complexity measure is to be applied to a time series, the time series 
must be converted to a symbol sequence. The easiest way to do this 
is to map the original real value of the time series to symbol “1” if its 
value is greater than the median and to symbol “0” if its value is less 
than the median—a binary partition. The choice of the median rather 
than the mean is important (Rapp et al. 1994). For a series of a given 
length, a random sequence has the highest complexity because there 

are no rules that would reproduce it. An ordered sequence is less com-
plex than a random one—the more ordered, the less complex. There 
are many ways of estimating complexity (see, e.g., Rapp and Schmah 
1996). Regardless of how it is estimated, it provides a sequence-de-
pendent measure of how much the structure of the time series differs 
from that of a random sequence with the same distribution of symbols 
(Watanabe et al. 2003).

In the following, we use a definition by Lempel and Ziv (Lempel and 
Ziv 1976). To calculate the Lempel-Ziv complexity, the time series is 
first mapped into a binary partition. Then, the resulting binary symbol 
sequence is expressed as a unique set of subsequences using a proce-
dure we describe below. The Lempel-Ziv complexity is equal to the 
number of these subsequences.

We illustrate the Lempel-Ziv procedure by adapting an example in 
Watanabe et al. 2003. Given a time series that has been reduced to the 
binary symbol sequence, 

            X ={x1,x2, …,xN} = 0001101001000101,

Figure 9. Mutual Information of the 
data shown on Figs. 7a and 7b. a, Top: 
eyes open, bottom: eyes closed. See the 
caption of Fig. 8a for details of the color 
coding. b, Mutual Information values 
from Fig. 8a shown as a single line plot.  
Each point corresponds to a cell in the 
arrays shown in Fig. 8a. Solid line = Eyes 
closed, Circles = Eyes open.

Figure 10. Net Transfer Entropy 
of the data shown on Figs. 7a and b. 
a, Top: eyes open, bottom: eyes closed. 
See the caption of Fig. 8a for details of 
the color coding. Note the difference be-
tween the color scales of the two panels; 
b, Net Transfer Entropy values  from Fig. 
9a shown as a single line plot. Each point 
corresponds to a cell in the arrays shown 
in Fig. 9a. Solid line = Eyes closed, Circles 
= Eyes open.
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We want to express X as

X = X1X2… Xc, 

where X1=x1, the first element of X, and the Xk, k=2, …, c are unique 
subsequences of X obtained as follows:

1.	 Start building X2 by taking the next element of X, i.e., x2=0: X2=0.
2.	Concatenate X1 and X2 to get X1X2=00.
3.	Remove the last element of X1X2 to get (X1X2)π=0. If the current 

value of X2 appears in (X1X2)π, then append the next element of X 
to X2, otherwise, start building X3. In the present case, the current 
value of X2=0 is contained in (X1X2)π=0, so we append the next 
value, x3=0, to X2 to get a new subsequence, X2=00.

4.	Repeat 2 and 3 to get the new values, X1X2=000, (X1X2)π=00. X2 
is contained in (X1X2)π, so we continue building X2 by appending 
x4=1, and get  the new X2=001.

5.	Repeat 2 and 3 to get the new values, X1X2=0001, (X1X2)π=000. X2 
is no longer contained in (X1X2)π, so X2 is complete, and we start 
building X3.

6.	Start by taking X3=x5=1, concatenate X1, X2, and X3 to get 
X1X2X3=00011; remove the last element to get (X1X2X3)π=0001. We 
note that X3=1 is contained in (X1X2X3)π so we add the next element, 
x6=0, to get X3=10. We get new values of X1X2X3 and (X1X2X3)π and 
note that the current X3=10 is not contained in (X1X2X3)π, so X3 is 
complete, and we start building X4.

We continue with the process until we come to the end of X with the 
result that we can write X as the sequence of subsequences,

X = (0)(001)(10)(100)(1000)(101).

Thus, the complexity of X is 6. 
 

The Lempel-Ziv complexity is sensitive to the length of the time se-
quence, so care must be taken when comparing sequences of different 
lengths. A generalization that is not epoch length dependent is redun-
dancy, defined in (Rapp et al. 2001) as

1 orig

o

C
R

C
= −

< >

where Corig is the complexity of the data and <Co> is the average com-
plexity of a number of “equiprobable surrogates” of the same length as 
the original. In the case of the binary partition used here, an equiprob-
able surrogate is just a random sequence of 0’s and 1’s in which there 
are as many 0’s as there are 1’s.

V.1a Vision is complex
Evaluating the Lempel-Ziv complexity of the EEG data shown in Figs. 
7a and b using a binary partition requires some care. Long-term trends, 
as in the case of the eyes closed data, could be due to drifts in the elec-
tronics of the measuring instruments. Performing a binary partition 
about the median of an entire time series with a linear trend could, in 
the worst case, put the first half of the time series below the median 
and the second half above. In the presence of long-term trends, rather 

than calculating the complexity of an entire time series, it is prudent to 
calculate, instead, the average complexity of a number of epochs that 
sample the whole time series. 

To estimate the complexity of the EEG data of Figs. 7a and b, we 
used ten equally-spaced non-overlapping 1000-point epochs that span 
the entire time series. Each epoch is detrended before its Lempel-Ziv 
complexity is calculated. The results are shown in Fig. 11. At each scalp 
site, the complexity of the EEG signal with eyes open greatly exceeds 
that for eyes closed. This is in agreement with the redundancy calcula-
tions reported by Watanabe et al 2003.

V.2 Predictability
If a time series is generated by a deterministic dynamical system, then 
it ought to be possible to predict its future from its past, at least in 
the short run. This notion serves as the basis of a measure that can 
be used for testing the possibility that a time series is deterministic 
—that is, to find out how well its future can be predicted from its past. 
A commonly used algorithm makes use of a procedure similar to one 
that used to be popular in weather forecasting. To predict tomorrow’s 
weather, look for a day in the past when the conditions were closest to 
today’s, and then predict that tomorrow’s weather will be like the day 
that followed that day in the past.

Predicting values of a time series, X={x1, x2, …, xN}, is just slightly 
more complicated than that old weather forecaster’s trick. Instead of 
trying to match xk-1 in order to predict xk, one may try to match the 
pair, (xk-1, xk-2). This way, one uses an approximation not just of the 
value of x, but also of its first derivative; or one may try to match (xk-1, 
xk-2, xk-3), to include the value of x as well as its first and second deriva-
tives, etc.

Predicting the kth element of X, then, involves the following steps:
1.	 Take the m previous elements, Xm

k={xk-m, xk-m+1, …, xk-1}. The value 
of m depends on how many of x’s derivatives one wishes to in-
clude.1 

Figure 11. Average Lempel-Ziv complexity of ten 1000-point epochs of the EEG data shown in Figs. 
9 and 10 at each scalp site. x : eyes closed, dots: eyes open.
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2.	For all previous sequences of m elements, Xm
j={xj-m, xj-, -m+1, …, xj-1}, 

m+1<j<k, calculate the distance,   

( )
1/2

2

,
1

m

k j k p j p
p

d x x− −
=

 
= −  
 
∑ .

Let Xm
Q be that sequence for which dk,Q=min(dk,j). X

m
Q is the near-

est neighbor of Xm
j. 

3.	The predicted value of xk, (xk)pred=xQ.

We get a trivial prediction if Xm
Q is the sequence immediately pre-

ceding Xm
k, or is one of the others in Xm

k’s recent past. To exclude se-
quences that are very close in time to Xm

k, we define an interval called 
the “blind” preceding xk, which may be taken  to be equal to the au-
tocorrelation time of the time series. All points inside the blind are 
excluded in the search for xQ. 

The quality of a set of predictions is assessed by the prediction error,

( )
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k k pred
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=

−
=

∑

 

where np is the number of predictions made and σx is the standard 
deviation of the x’s.

V.2a Vision is unpredictable
Evaluating the predictability, or more precisely the prediction error, of 
the EEG’s of Figs. 7a and b presents the same problems as evaluating 
their complexity. When there are long-term trends that may be due 
to external causes, the process of finding nearest neighbors may be 
compromised. 

As in the case of complexity, we used ten detrended non-overlap-
ping 1000-point epochs that sample the entire time series and calcu-
late their average prediction error. The results are shown in Fig. 12. 
The prediction errors for the eyes open condition are consistently and 
significantly larger than those for eyes closed. This is not unexpected 
since, with the eyes open, the brain is receiving considerably more ex-
ternal stimuli leading to changes in brain potentials that are not solely 
determined by the brain’s previous state.

NOt surprisingly, Lempel-Ziv complexity and prediction error are 
highly correlated—the more complex, the less predictable. Their cross-
correlation coefficient for the eyes closed condition is 0.97 while that 
for the eyes open condition is 0.98.

V.3 Covariance complexity
An alternative approach to calculating the complexity of a multichan-
nel signal can be obtained by estimating its covariance complexity. 
This is a measure of the dimensionality of the original multichannel 
signal. Let Vj

k be the voltage measurement of channel k at time tj. This 
multichannel record can be expressed as a matrix A.

1 2 Z
1 1 1
1 2 Z
2 2 2

1 2 Z
N N N

V V V
V V V

A

V V V

 
 
 

=  
 
 
 



  

Matrix A can be re-expressed using its singular value decomposition 
(see, e.g., Golub and van Loan 1983).

A = VDUT

 
Matrix D is important for determining the covariance complexity. Ma-
trix D is a diagonal matrix containing the singular values, D = diag(λ1, 
λ2, ......λZ), where we order the columns of the decomposition so that λi 
≥ λi+1. The fraction of total variance of the original z-channel signal in 
the k-th principal component is 

Z
2 2

k k j
j=1

Var =            λ   /     λ∑

In nonrandom multichannel signals, like multichannel EEGs, variance 
is not uniformly distributed across all of the principal components. A 
significant fraction can be concentrated in the first component. For 
the ten dimensional EEGs considered here, the fraction of variance in 
the first component is 0.753±0.086 in the eyes closed condition and 
0.681±0.123 in the eyes open condition (Rapp, et al., 2005).

The covariance complexity measures the distribution of variance 
across principal components.

Z

cov j j
j 1

C Var logVar / logZ
=

  = − 
  
∑

If 100% of the signal variance is in the first component, Ccov=0. If vari-
ance is spread equally across all components, which happens with ran-
dom signals, Ccov=1. Using the ten channel EEG data described here 
Ccov=0.396±0.100 in the eyes closed condition and Ccov=0.469±0.102 in 
the eyes open condition (Rapp et al. 2005).

Figure 12. Average prediction error of ten 1000-point epochs at each scalp site of the EEG data 
shown in Figs. 7a and b. x: eyes closed, dots: eyes open.
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VI. Hypothesis testing: Scientist, falsify thyself!
Initial analysis may suggest a hypothesis about the nature of a data 
set or of the process or the system that generated the data. If so, it is 
important to verify if the hypothesis is indeed correct. That is, in the 
spirit that the philosopher Karl Popper described as the “falsifiability” 
of science, one sets up a procedure that makes it possible to determine 
if the hypothesis is false. Statisticians call this hypothesis testing. It con-
sists of the following (see, e.g., Theiler et al. 1992, Rapp et al. 2001)

(1)	  Make a null hypothesis about the data, 
(2)	 Perform a transformation of the data that preserves properties 

consistent with the hypothesis but destroys those that are not. 
The transformed data set is called a surrogate.

(3) 	Calculate a measure that is sensitive to the destroyed properties 
(a discriminating statistic) using the original data and several 
realizations of the surrogate, then use the results to determine 
the likelihood that the original data and the surrogates belong to 
the same class. If it is sufficiently unlikely that the original and 
the surrogates belong to the same class, then the null hypothesis 
is rejected.

VI.1 Surrogates
Each hypothesis about the nature of a data set requires its own surro-
gate. Here, we discuss only a few that are commonly used and illustrate 
their use with a small subset of the EEG data shown in Figs. 7a and b. 
See Theiler 1992, Kantz and Schreiber 1997, Rapp 2001 for more details 
and other surrogates. 

VI.1a Random shuffle
If the null hypothesis is that the data are independent and identically 
distributed random numbers (iid)-called white noise by physicists and 
engineers—we create the appropriate surrogates by merely randomly 

shuffling the data. This destroys all information that depends on the 
time sequence of the data. Fig. 13a shows a 1500-point segment of EEG 
from location Cz of the eyes closed data of Fig. 7a. A random shuffle 
surrogate is shown in Fig. 13b. The two are clearly different. In fact, 
visual inspection of the top panel is enough to establish that it is not 
white noise.

VI.1b Small shuffle
As shown by Figs 13a and b, a random shuffle is a pretty drastic op-
eration. The only things it leaves unchanged are identically distributed 
random numbers (iid). Many interesting data, such as the examples we 
have considered so far, are usually not iid.

A less drastic shuffle, due to Nakamura and Small 2005 and which 
they call the “Small shuffle,” keeps the long-term trends intact, but 
randomizes local fluctuations. This is achieved by perturbing the time 
order of small segments of the data, but leaving the over-all structure 
unchanged. A number drawn from a normal distribution with unit 
variance is added to each of the indexes of the data. Since the additions 
are normally distributed, small changes are more likely than big ones. 
The perturbed indexes are sorted, but since the perturbations are typi-
cally small, the sorted list will differ only locally from the original. The 
indexes of the sorted list are then used to index the original time series 
to obtain the surrogate.

Figure 13c shows a Small shuffle surrogate of the data in Fig. 13a. Fig. 
13c clearly preserves the long-term trends. Its local fluctuations are 
random, but this is something that needs some analysis to establish.  

VI.1c Random phase surrogates
White noise has a power spectrum that undergoes random oscillations 
about a more or less level value. There are so-called colored noises, ran-
dom time series whose power spectra are more structured than white 

Figure 13. a, A 1500-point segment of the EEG data from scalp site Cz shown in Fig. 7a; b, Random shuffle; and c, Small shuffle surrogates of the data shown in Fig. 13a.
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noise. These time series can be generated by subjecting random num-
bers to linear filters. To test the hypothesis that a time series is linearly 
filtered noise (also called linearly correlated noise), we need surrogate 
data that have the same power spectra as the original time series, but 
which are otherwise random. These are called random-phase surro-
gates.

The power spectrum does not depend on the phases of the Fourier 
coefficients. This provides a way for generating surrogates that have 
the same power spectra as an original data set, but which are other-
wise random. It goes as follows:

1.	Calculate the Fourier Transform of the original signal—i.e., 
generate its Fourier coefficients, 

2.	Replace the phases of the coefficients by random angles.
3.	Calculate the inverse Fourier Transform of the coefficients with 

random phases to get a random phase surrogate.
	 The above operations leave the magnitudes of the Fourier co-effi-
cients unchanged, so the power spectrum of the random phase sur-
rogate is the same as that of the original, but since the phases have 
been randomized, the surrogate is now random. In particular, since the 
surrogate is linearly correlated noise, any nonlinear correlations of the 
original data are destroyed.

It is seen that the calculation of the original signal’s Fourier trans-
form and its inverse are the critical steps in the construction of a ran-
dom phase surrogate. It has been shown that seemingly small-scale 
numerical errors in the calculation of the Fourier transform can result 
in a false-positive rejection of the surrogate null hypothesis. That is, 
the surrogate calculations can suggest the presence of a deterministic 
nonlinear structure in a signal constructed by linearly filtering random 
numbers. Procedures that can reduce the possibility of these failures 
have been identified (Rapp et al. 2001).

Figure 14 illustrates the properties of the random phase surrogate. 
(a) shows the first 1000 points of the eyes open EEG from scalp site F3 
in Fig. 7b; (b) is the PSD of (a). (c) is a random phase surrogate of (a),  
(d) is the PSD of (c). Note that (a) and (c) are different, but that (b) and 
(d) are identical.

In the case of multivariate data, if the phases of the Fourier co-ef-
ficients corresponding to the same frequency are replaced by the same 
random angles for all variates, then not only are the PSD’s of the in-
dividual variates preserved, so are their cross-correlations (Pritchard 
and Theiler 1994). This makes multivariate random phase surrogates 
constructed in this manner appropriate for testing the null hypothesis 
that the correlations of the different data streams are linear.

VI.1d Gaussian-scaled surrogates
Suppose that linearly correlated noise, x, is measured using an instru-
ment that outputs 

y = h(x)

The function, h is called an observation function or measurement func-
tion. If h is linear, then y is also linearly correlated noise. Otherwise, 
y becomes another kind of noise that must be modeled by a different 
kind of surrogate. A commonly used case is that for which h is static, 
monotonic, and nonlinear, in which case one gets gaussian-scaled sur-
rogates.

Surrogates of this type are obtained by another controlled shuffle. 
These surrogates have exactly the same statistics as the original but 
their spectra are not the same. They are obtained as follows:

1.	Given a time series, {x1, x2, …, xN},  generate a set of gaussian dis-
tributed random numbers, {y1, y2, …, yN} and then arrange the y’s  
so that they are in the same rank order as the x’s. 

2.	Generate {y1
s, y2

s, …, yN
s},  a random phase surrogate of the y’s, 

3.	Rearrange the x’s so that they have the same rank order as the ys’s. 
The resulting set, call it {x’}, is a gaussian-scaled surrogate of {x}.

Since this is a controlled shuffle of the x’s, the surrogate has the same 
distribution function, hence the same statistics as the original. But not 
the same power spectrum. For surrogates that preserve both the power 
spectrum and the distribution, see Schreiber and Schmitz 1996.

VI.2  Z-scores, Probabilities and Monte Carlo
Having constructed a surrogate for testing a particular null hypothesis, 
it then becomes necessary to calculate the probability that the original 
data and the surrogates belong to the same population.
	 Let us denote a discrimitating statistic by M, let Morig be its value for 
the original time series and let Msurr,1, Msurr,2, …, Msurr,N be values char-
acterizing N implementations of the surrogate. We denote by <Msurr> 
and σsurr, respectively, the mean and standard deviation of the Msurr,i’s. 
A commonly used measure of the separation between Morig and <Msurr> 
is the z-score,

.orig surr

surr

M M
Z

−
=

σ

Physicists have a more descriptive term for this. They call it the “num-
ber of sigmas” that the original differs from the surrogates. If the val-
ues of M for the surrogates are normally distributed, for a z-score of Z, 
the null hypothesis can be rejected with a confidence level of

( )1 ( / 2
1 ,
2

erfc Z+=
 

Figure 14. a, A 1000-point segment of the EEG recorded at site F3 in the “eyes open” condition 
(Fig. 7b); b, PSD of Fig. 14a; c, A random phase surrogate of Fig. 14a; d, PSD of Fig. 14c.
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where erf(.) is the error function. In this case, with a Z-score of 2 the 
null hypothesis can be rejected at a 97% confidence level.

If the Msurr’s are not distributed normally, a Monte Carlo probability 
is usually used to estimate the likelihood that the null hypothesis is 
not true. For a so-called two-sided test, arrange the Msurr’s and Morig in 
rank order. If, in this list, M0 is the nMC

th largest or smallest, then the 
null hypothesis is rejected with a confidence level (1-s)×100 % where s is 
defined by (Theiler and Prichard 1997)

2
.

1
MCn

s
N

=
+

VI.2a EEGs tested
1. Single channels
We use 1000-point segments of the EEG data from sites F3 and P3 in 
the eyes open condition (Fig. 7b) to test a few hypotheses about the 
nature of the signals from individual scalp sites and about their rela-
tionships with each other. We chose these two sites as examples spe-
cifically because they have the largest value of net transfer entropy. 
We start with the null hypothesis that local fluctuations of the EEG are 
random. If this is true, then a Small shuffle should not affect the values 
of such measures as Lempel-Ziv complexity and Prediction error, so 
we use these as our discriminating statistics.

The top row of Fig. 15 shows the data from F3 and P3 (eyes open). 
The middle and bottom rows are, respectively, values of the Lempel-
Ziv complexity and of the Prediction error for 39 realizations of the 
Small shuffle for each of the data files. The level lines in these graphs 
indicate Morig for each case. According to Eq (20), the null hypothesis 
can be rejected at a better than 95% Monte Carlo confidence level. As-
suming that the Complexity and Prediction errors of the surrogates are 
normally distributed, Eq. (19) implies that the null hypothesis can be 
rejected almost with certainty.

We get a different story when testing the hypothesis that the EEG 
data are linearly correlated noises, using random phase surrogates and 
again using Lempel-Ziv complexity and prediction error as discrimi-
nating statistics. 

The top panel of Fig. 16 shows the values of Lempel-Ziv Complexity 
(left) and Prediction error (right) for 39 random phase surrogates of 
the F3 data shown in Fig. 15a. In both cases, the Monte Carlo confi-
dence level for rejecting the null hypothesis is 5%. The confidence level 
for rejecting the null hypothesis, assuming normal distribution of the 
surrogate discriminating statistics are 0.57 for Complexity and 0.63 for 
Prediction error. The null hypothesis cannot be rejected.

In the case of P3, however, the results are ambiguous. Using com-
plexity as the discriminating statistic, the null hypothesis can be re-
jected at a Monte Carlo confidence level of 30% or a gaussian confi-
dence level of 50%. On the other hand, using prediction error as the 
discriminating statistic, the null hypothesis can be rejected at a Monte 
Carlo confidence level of 95% and at a gaussian confidence level of al-
most certainty.

The foregoing is corroborated by results obtained using gaussian-
scaled surrogates. If F3 is indistinguishable from linearly correlated 
noise, then it should be possible to distinguish it from linearly cor-
related noise that has been passed through a static, monotonic, non-
linear function. Indeed, the results shown on the upper panels of Fig. 
17 indicate that, with complexity as a discriminating statistic (upper 
left), the hypothesis that F3 is this kind of nonlinearly filtered noise 
can be rejected at a Monte Carlo confidence level of 90%, or a gaussian 
confidence level of 93%. With prediction error as a discriminating sta-
tistic (upper right), the corresponding confidence levels for rejecting 
the null hypothesis are 90% and 97% respectively.

In the case of P3, the ambiguity resulting from the use of random 
phase surrogates persists when gaussian-scaled surrogates are used, as 
shown by the lower panels of Fig. 17. With complexity as a discriminat-

Figure 15. a, 1000-point EEG segment from F3 with eyes 
open; b, Lempel-Ziv complexity of 39 Small shuffle sur-
rogates of Fig. 15a; c, Prediction errors of 39 Small shuffle 
surrogates of Fig. 15a; d, a 1000-point EEG segment from 
P3 with eyes open; e, Lempel-Ziv complexity of 39 Small 
shuffle surrogates of Fig. 15d; f, Prediction errors of pf 
39 Small shuffle surrogates of Fig. 15d. In the two bottom 
rows, the level lines are the values obtained using the 
original data.
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ing statistic (lower left), the Monte Carlo confidence level for rejecting 
the null hypothesis is 50%, the gaussian confidence level is 72%. On the 
other hand, with prediction error as a discriminating statistic (lower 
right), the null hypothesis can be rejected with almost certainty.

The above should serve as reminders that the results of hypothesis 
testing are functions of both the surrogate and the discriminating sta-
tistic (see, e.g., Theiler and Rapp 1996).

2. Correlations and information transfer
We now test the hypothesis that the correlations between F3 and P3 
data are linear by using bivariate random phase surrogates with Mu-
tual Information and Transfer Entropy as discriminating statistics. By 
construction, the linear cross-correlation of F3 and P3 is identical to 
those of their bivariate random phase surrogates.

Figure 18 shows values of Mutual Information (left) and of Transfer 
Entropy (right) for 39 bivariate random phase surrogates of the F3 and 
P3 data of Fig. 12. Using these values in Eq. (20) says that with Mutual 
Information as the discriminating statistic, the null hypothesis can be 
rejected with a Monte Carlo confidence level of 85% or a gaussian con-
fidence level of 90%. Using Transfer Entropy as a discriminating sta-
tistic, the null hypothesis cannot be rejected with similarly high con-
fidence levels: 72 % for Monte Carlo and 55% for gaussian. The mutual 
information of F3 and P3, and the information transfer between them 
cannot be accounted for solely by linear processes. 

VII. Concluding remarks
It has been said that identifying a phenomenon as non-linear is simi-
lar to identifying an animal as a non-elephant. There are vastly more 
of one kind than of the other. In the same spirit, one may say that if 
it’s static, it’s probably dead. In the analysis of biological data, linear 
and static measures by themselves are likely to miss a large part of the 
story. On the other hand, there is a lot of important and relatively eas-
ily calculable information obtainable from linear and static measures. 

It is prudent, always, to let the data suggest what analytical tools are 
needed to unfold their story.
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Figure 16. Lempel-Ziv complexity (left) and prediction error (right) of 39 random phase sur-
rogates of the F3 (top) and P3 (bottom) data shown in Fig. 15. The level lines indicate the values 
for the original data.

Figure 17. Lempel-Ziv complexity (left) and prediction error (right) of 39 gaussian-scaled sur-
rogates of the F3 (top) and P3 (bottom) data shown in Fig. 15. The level lines indicate the values 
for the original data.
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